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1 CHAPTER 1 – INTRODUCTION

1 Chapter 1 – Introduction

1.1 What is a bank?

First operational definition: A bank is an institution whose current operations consist in

granting loans and receiving deposits from the public.

Contemporary banking theory divides banking functions into four main categories:

1. Offering access to a payment system

• Money changing (e.g. currencies).

• Management of deposits.

• Payment services – financial infrastructure.

2. Transforming assets

• Convenience of denomination.

• Quality transformation.

• Maturity transformation.

3. Managing risks

• Credit risk.

• Interest rate risk.

• Liquidity risk.

• (Off-balance sheet items).

4. Processing information and monitoring borrowers

• Managing problems resulting from imperfect information on borrowers.

1.2 Banking in General Equilibrium theory

Model: A two-period model with one good. Three agents in the economy: The consumer,

the firm and the bank.

• The Consumer chooses consumption profile in order to maximize utility under the

budget constraints:

C1 + Bh + D+ = ω1

C2 = πf + πb + (1 + r)Bh + (1 + rD)D+,

where D+ denotes deposits and Bh is amount of securities held. In order for the

consumer to hold both deposits and securities, it must hold that r = rD.
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2 CHAPTER 2 – WHY BANKS?

• The Firm chooses its investment level and financing; bank credit L and issuance

of securities Bf in order to maximize its profits under the constraints:

πf = f(I)− (1 + r)Bf − (1 + rL)L−

I = Bf + L−

In order for the firm to be willing to both taking bank loans and issue securities, it

must hold that r = rL.

• The bank seeks to maximize its profits under the constraints:

πb = rLL+ − rBb − rDD−

L+ = Bb + D−

In general equilibrium (1) each agent behaves optimally, and (2) each markets clear. In

order for all markets to be clearing (functioning at all) it must be that r = rL = rD.

Hence, there is no role for banks in general equilibrium since it makes zero

profits and have no impact on other agents. This facts is due to securities and

loans / deposits being perfect substitutes.

This brings about a need for another theory of the existence of banks. This is the scope

of the next chapters.

2 Chapter 2 – Why banks?

Chapter 2 assess the existence of banks as a result of transaction costs, which in turn

are caused by information asymmetry. Direct transaction costs are not considered to

be important as of today. Banks can be seen as coalitions of individuals who exploit

economies of scale or economies of scope in transaction technology. The chapter contains

three examples showing different reasons for asymmetric information leading to existence

of transaction costs.

2.1 Liquidity insurance

Consider a three-period, one good economy with a continuum of ex-ante identical agents,

each endowed with one unit of the good. Ex-post, at t = 1, the agents learn whether they

have the utility function u(C1) or ρu(C2). The ex-ante expected utility is thus

U = π1u(C1
1) + π2ρu(C2

2), (1)

where Ci
t is the consumption of an agent of type i at time t. It is assumed that u′ > 0 and

u′′ ≤ 0. The good can either be stored (with a perfect storage technology) or invested in
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2.1 Liquidity insurance 2 CHAPTER 2 – WHY BANKS?

a long-run technology which returns R > 1 units at t = 2, but only L < 1 if liquidated at

t = 1.

• Autarky. The agent can here consume either

C1 = 1− I + LI = 1− I(1− L) ≤ 1, (2)

if he has to consume early, or

C2 = 1− I + RI = 1 + I(R− 1) ≤ R. (3)

• Market economy. We now allow trade, in the sense of a bond market at t = 1.

The price of a bond which returns 1 unit of the good at t = 2 is p. The agent can

then obtain

C1 = 1− I + pRI,

or if the agent consumes at t = 2:

C2 =
1− I

p
+ RI =

1

p
[1− I + pRI]

In equilibrium it must be that p = 1
R
, leading to C1 = 1 and C2 = R. Hence,

market equilibrium Pareto dominates the autarky solution.

• Pareto efficient allocation. We now seek to characterize the Pareto optimal

solution, specifically in order to decide whether the market reaches this solution.

The Pareto Optimal allocation satisfies:

max π1u(C1) + ρπ2u(C2)

s.t. π1C1 + π2
C2

R
= 1

The first-order condition for the optimal allocation is 1

u′(C∗
1) = ρRu′(C∗

2) (4)

Then we can conclude that the market allocation will only be Pareto efficient in the

peculiar case where u′(1) = ρRu′(R). We conclude the following

Proposition 2.1 A market economy does not provide perfect insurance against liquidity

shocks, and therefore does not lead to an efficient allocation of resources. The efficient

allocation can be reached by a financial intermediary (bank) through the introduction of a

deposit contract.

1Can be derived through the usual MRS-condition.
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2.2 Information sharing coalitions 2 CHAPTER 2 – WHY BANKS?

2.2 Information sharing coalitions

This theory explores the role of a bank as a coalition of borrowers. We study a model,

where there exists a large number of entrepreneurs, each with a risky project. The project

requires a fixed investment of 1, and yields a net return of R̃(θ) ∼ N(θ, σ2), where σ2

is the same for all projects, and is at the same time common knowledge. In opposition,

θ is private information to the entrepreneur, and only the statistical distribution of θ is

common knowledge. If θ was observable, the entrepreneur would sell the project at a price

P (θ) = E[R̃(θ)] = θ, giving the entrepreneur a total (secure) wealth W0 + θ.

The entrepreneur is risk averse, u(ω) = −e−ρω. By self-financing the project, the en-

trepreneur’s expected utility will be

E[u(W0 + R̃(θ))] = u(W0 + θ − 1

2
ρσ2). (5)

Therefore, an entrepreneur will only sell the project if

W0 + P > W0 + θ − 1

2
ρσ2 ⇔ θ < θ̂ = P +

1

2
ρσ2 (6)

We can from the expression above identify the adverse selection problem, namely that

only entrepreneurs with low expected return will issue equity.

Assume now that θ can take on only one of two possible values θ1 < θ2. If both types are

marketed then it must be that

P = π1θ1 + π2θ2 ∧ P ≥ θ2 −
1

2
ρσ2

Combining these two expressions yields

π1(θ2 − θ1) ≤
1

2
ρσ2 (7)

If (7) is satisfied, there will exist a pooling equilibrium in which all projects are financed,

since the risk premium here outweighs the adverse selection effect. If (7) is not satisfied,

there will be a separating equilibrium in which good projects are self-financed.

Here the equilibrium will be inefficient.

In the signalling equilibrium the good entrepreneurs will prefer self-financing, but would

like to stick with partial self-financing if possible. If they can convince investors that their

project is of good quality such a solution will become available. Leland & Pyle (1977)

show that this solution can be achieved through a self-financing fraction α. The condition
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2.3 Delegated Monitoring 2 CHAPTER 2 – WHY BANKS?

is the IC1-condition:

u(W0 + θ1) ≥ E[u(W0 + (1− α)θ2 + αR̃(θ1))] ⇒

θ1 ≥ (1− α)θ2 + αθ1 −
1

2
ρσ2α2 ⇔

α2

1− α
≥ 2(θ2 − θ1)

ρσ2
.

(8)

Proposition 2.2 (Leland & Pyle (1977))There is a continuum of equilibria all satisfying

inequality (8) characterized by a low price of equity P1 = θ1 for projects without self-

financing and a high price of equity P2 = θ2 for projects with self-financing.

Of course, the best of these possible solutions will be the one with the lowest possible α,

leading (8) to hold with equality. Define then the cost of capital as

C(σ) =
1

2
ρσ2α(σ), (9)

where α(σ) is defined implicitly from (8) holding with equality. The following result is

obtained

Proposition 2.3 Diamond (1984) The unit cost of capital decreases with the size of the

coalition of borrowers.
(

∂C(σ)
∂σ

> 0
)

2.3 Delegated Monitoring

This branch of the asymmetric information explanation of the existence of financial inter-

mediaries takes a view of the latter as credit monitors.

In the model of Diamond (1984) there are n identical borrowers, that can each be mon-

itored at a cost K or the moral hazard problem can be solved by a debt contract at a

non-pecuniary cost C. Assume that m investors are needed in order to finance one project

and that there are at least nm investors. Hence, the cost of direct monitoring is nmK

and with delegated monitoring nK + Cn, where Cn is the cost of monitoring the monitor.

Diamond states the following result:

Proposition 2.4 (Diamond (1984)) If monitoring is efficient (K < C), investors are

small (m > 1) and investment is profitable, delegated monitoring dominates direct lending

as soon as n is large enough (nK + Cn < nmK).

This proposition has been criticized for the use of a non-pecuniary penalty (C).
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2.4 Coexistence of banks and direct lending 3 CHAPTER 3 – THE IO APPROACH

2.4 Coexistence of banks and direct lending

This part of the book holds a few models on this issue, here only one of the conclusions

is stated.

Proposition 2.5 Holmström & Tirole (1993) In equilibrium, only well capitalized firms

(A ≥ Ā) can issue direct debt. Reasonably capitalized firms (A(β) ≤ A < Ā) borrow from

banks and undercapitalized firms A ≤ A(β)) cannot invest.

3 Chapter 3 – The IO approach

The chapter compares the equilibria obtained in the banking business under different

market conditions. The entire chapter views banking as the production of deposit and

loans services, the bank’s cost function being C(D, L). We define α to be the fraction of

deposit to be held by bank in the form of cash reserves.

3.1 Perfect Competition

The chapter starts with a story on perfect competition. The bank’s profit will be

π = rLL + rM + rDD − C(D, L),

where M = (1−α)D−L is the net position of the bank on the interbank market, leading

the profit to be rewritten as

π(D, L) = (rL − r)L + (r(1− α)− rD)D − C(D, L) (10)

As usual, the profit is maximized by taking the first-order conditions:

∂π

∂L
= (rL − r)− ∂C

∂L
(D, L) = 0

∂π

∂D
= (r(1− α)− rD)− ∂C

∂D
(D, L) = 0

(11)

From the above expressions we conclude the following:

Proposition 3.1 A competitive bank will set the volume of loans and deposits such that

the intermediation margins equal the marginal costs (p = MC). Furthermore, rD ↑ ⇒ D ↓
and rL ↑ ⇒ L ↑. The cross-effects depend on the sign of ∂2C

∂L∂D
. If ∂2C

∂L∂D
< 0 there are

economics of scope.

3.2 Monopoly (Monti-Klein)

The Monti-Klein model consider a monopolistic bank confronted with a downward sloping

demand L(rL) and an upward sloping supply D(rD). The decision variables are D and L.
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3.3 Cournot Oligopoly 3 CHAPTER 3 – THE IO APPROACH

The firm seeks to maximize profits:

π(L, D) = [rL(L)− r] L + [r(1− α)− rD(D)] D − C(D, L) (12)

The corresponding first-order conditions are

∂π

∂L
= r′L(L)L + rL − r − ∂C

∂L
(D, L) = 0

∂π

∂D
= −r′D(D)D + r(1− α)− rD −

∂C

∂D
(D, L) = 0

(13)

These can be rewritten to be expressed in terms of Lerner indices:

r∗L − (r + C ′
L)

r∗L
=

1

εL(r∗L)

r(1− α)− C ′
D − r∗D

r∗D
=

1

εD(r∗D)

(14)

We get the following result

Proposition 3.2 If management costs are separable, the optimal deposit rate is indepen-

dent of the loan market and vice versa. If r increases, both r∗L and r∗D increases.

3.3 Cournot Oligopoly

We now try to use the Monti-Klein setup for a Cournot Oligopoly model of banking. With

the cost function C(D, L) = γDD + γLL, the bank’s profit can be stated as

π(Dn, Ln) =

[
rL

(
Ln +

∑
m6=n

L∗
m

)
− r

]
Ln+

[
r(1− α)− rD

(
Dn +

∑
m6=n

D∗
m

)]
Dn−C(Dn, Ln)

(15)

As with the monopoly case we can take first-order conditions and rewrite them in terms

of Lerner indices:

r∗L − (r + γL)

r∗L
=

1

NεL(r∗L)

r(1− α)− γD − r∗D
r∗D

=
1

NεD(r∗D)

(16)

We see that results are similar to the ones in the monopoly case except from the N in

the denominator. The monopoly case is thus just a special case of the Cournot model

and perfect competition is also just a special case of the Cournot model (as usual). This

makes our lives a lot easier since we can use the Monti-Klein model widely.
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3.4 Monopolistic Competition 3 CHAPTER 3 – THE IO APPROACH

3.3.1 Deposit rate regulations

We now apply the Monti-Klein model to the case where we impose a deposit rate ceiling

rD ≤ r̄D. Such a policy has the intention of lowering rL (expansionary policy). The

question is whether such a policy is effective.

Clearly, if r∗D ≤ r̄D, the interest rate ceiling has no effect. The more interesting case is

when the opposite is the case. Then it must now hold that

∂π

∂rL

(r̄D, rL) = 0

We want to determine the sign of drL

dr̄D
. In order to do this we invoke the implicit function

theorem:
∂2π

∂r2
L

drL

dr̄D

+
∂2π

∂rL∂rD

= 0 (17)

Since ∂2π
∂r2

L
< 0, it must be that sign

(
drL

dr̄D

)
= sign

(
∂2π

∂rL∂rD

)
. We can then conclude

Proposition 3.3 A ceiling on deposit rates will make lending rates decrease if and only

if ∂2π
∂rL∂rD

> 0 ⇒ ∂2C
∂D∂L

> 0. Therefore, if costs are separable, there will be no effect on

rL.

3.4 Monopolistic Competition

We now apply the Salop circle model to the banking problem. First we want to find out

whether free competition leads to the efficient number of banks.

In the model, there are n banks collecting deposits from the D depositors, each endowed

with one unit of cash, and the bank invests yielding a constant return r. There is a

transportation cost for the depositor at αx. The total transportation cost will be:

2n

∫ 1
2n

0

αxDdx =
αD

4n
(18)

The optimal number of banks is fund by minimizing total transportation costs and costs

of setting up banks:

∂
(
nF + αD

4n

)
∂n

= F − αD

4n2
= 0 ⇒ n∗ =

1

2

√
αD

F
(19)

If competition is free, the number of banks will be too high. To see this we start by

determine the location of the ‘marginal depositor’, who is indifferent about going to bank

i or bank i + 1. The distance x̂i between the marginal depositor and the bank is defined

10



4 CHAPTER 4 – THE LOAN CONTRACT

by:

ri
D − αx̂i = ri+1

D − α

(
1

n
− x̂i

)
⇒ x̂i =

1

2n
+

ri
D − ri+1

D

2α

and the volume of deposits attracted by bank i is

Di = D

[
1

n
+

2ri
D − ri+1

D − ri−1
D

2α

]
,

leading profits to be

πi = D(r − ri
D)

(
1

n
+

2ri
D − ri+1

D − ri−1
D

2α

)
Maximizing these expressions for all i gives the symmetric unique solution

ri
D = . . . = rn

D = R− α

n
⇒ π1 = . . . = πn =

αD

n2

Setting this equal to the setup cost gives

ne =

√
αD

F
(20)

This is clearly larger than the efficient number of banks.

3.4.1 Deposit rate regulations revisited

A model analogue to the previously presented is used here with the slight modification

that depositors are now also borrowers with an inelastic credit demand L and have utility

U = (1 + rD) − αxD − (1 + rL)L − βxL. The equilibrium rates become re
D = r − α

n
and

re
L = r + β

nL
. This gives profit πe = D(α+β)

n2 . Again, setting this equal to the entry cost

gives

ne =

√
D(α + β)

F
(21)

There will be independent pricing of deposits and loans, unless the bank is allowed to

offer tied-up contracts.

The following proposition, which gives the opposite conclusion than the one obtained from

the Monti-Klein model can be proved:

Proposition 3.4 Under deposit regulation, banks will offer tied-up contracts with lower

credit rates than in the unregulated case. So, regulation is effective.

4 Chapter 4 – The Loan Contract

In a sense, one can say that the overall question in this chapter is whether a standard

debt contract is efficient. We specifically dig deeper into three aspects: (1) The symmetric
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4.1 Perfect information 4 CHAPTER 4 – THE LOAN CONTRACT

information case, (2) The asymmetric information case (ex post moral hazard – costly

state verification), (3) Ex ante moral hazard. The section about renegotiation of debt can

be skipped, and the section about the role of collateral is postponed until chapter 5.

4.1 Perfect information

In the case where the cash flow ỹ is actually observable, the contract should reflect the

attitudes towards risk for the borrower and the lender, such that

R′(y) =
IB(y −R(y))

IB(y −R(y)) + IL(R(y))
, (22)

which is the borrower’s fraction of the total absolute risk aversion. The idea when deriving

this result is to maximize the utility of the borrower subject to the lender obtaining a

certain minimal utility level. The result only holds if limited liability constraints are not

binding.

The result is not very satisfactory in the banking context. If the bank is risk neutral,

then R′(y) should be close to one. But in a typical debt contract R(y) = min[y, R]. So

we need to extend the model with an information asymmetry.

4.2 Ex post moral hazard

This section deals with asymmetric information, particularly the case of ex post moral

hazard. Two cases are studied, the case of costly state verification and the case of thereat

of termination.

4.2.1 Costly state verification

The previous model is modified such that the cash flow is only observable to the lender if

he undertakes an audit at a cost of γ. We shall find a contract that is a direct revelation

mechanism specified by

1. A repayment function R(ŷ).

2. An auditing rule, identified as a set S of reports that will lead to an audit.

3. A penalty function P (y, ŷ).

The first result is that in order for the contract to be incentive compatible, it must hold

that (1) No audit ⇒ Constant repayment and (2) Audit ⇒ Lower repayment:

∀y /∈ S R(y) ≡ R ∧ ∀y ∈ S R(y) ≤ R

12



4.3 Ex ante moral hazard 4 CHAPTER 4 – THE LOAN CONTRACT

Contracts fulfilling these expressions will be incentive compatible. If they should also be

efficient, it must be that

∀y ∈ S R(y) = min[y, R] ∧ S ′ = {y|y < R} (23)

The first equation states that in the audit zone, taking into account limited liability and

incentive compatibility, the repayment must be maximal. The second equation states

that an audit will only take place when reimbursement is less than R – bankruptcy. We

can interpret the equations as a standard debt contract. We have therefore the following

result:

Proposition 4.1 If both agents are risk neutral, any efficient incentive compatible debt

contract is a standard debt contract.

Diamond suggests that if auditing costs are infinite (auditing impossible) the outcome of

a standard debt contract can still be achieved through the introduction of a nonpecuniary

cost ϕ(y), that the lender can inflict on the borrower if the latter does not meet its debt

obligations. Now we will still have the standard debt contract, but if the borrower reports

y < R, then the lender will inflict a nonpecuniary cost on the borrower such that his total

cost will be the same as if he had reported y = R. See figure 4.2 on page 98.

4.2.2 Threat of termination

Bolton & Scharfstein (1990) study the repeated contract (two periods). If ỹ can only

take on two values, a high ȳ and a low y value, then in the one-shot relationship, the

borrower will always report y. The bank may be willing to renew the loan only if ȳ is

reported in the first period, since it knows that y will evidently be reported in the second.

If the gain in the first period is high enough compared to the loss in the second, then this

contract will be signed. This is equivalent to

π ≥ 0 ⇔ R ≥ L +
L− y

P [ỹ1 = ȳ]
(24)

At the same time it must hold that R ≤ E[ỹ]. The repayment exists if and only if:

L− y ≤ P [ỹ1 = ȳ](E[ỹ]− L) (25)

4.3 Ex ante moral hazard

Here we consider a model in which the return of the investment is continuous, and the

distribution is influenced by the borrower’s effort e, which at the same time gives disutility

to the borrower. We wish to maximize the borrower’s utility given an IR constraint for

the lender, an IC constraint for the borrower and the limited liability constraint. The

result is:

13



5 CHAPTER 5 – CREDIT RATIONING

Proposition 4.2 Given the technical condition monotone likelihood ratio, the optimal

repayment is

R(y) = 0 for y ≥ y∗

R(y) = y for y < y∗.

See figure 4.4, page 110.

5 Chapter 5 – Credit rationing

This chapter focusses on credit rationing, meaning that some borrower’s demand for credit

is turned down, even though this borrower is willing to pay all the price and non-price

elements of the loan contract.

5.1 Backward-bending supply

Often in credit rationing theory the property if backward bending supply is taken as given.

As soon as this is the case, credit rationing can of course occur – see figure 5.2, p. 140.

The crucial question is of course what can cause this property.

This can be a result of adverse selection. In the model of Stiglitz & Weiss (1981),

borrowers differ only by a risk parameter θ. It is assumed that E[π(y)|θ] is increasing in

θ. Therefore, there must exist a value θ∗, for which it holds that E[π(y)|θ∗] = π̄. The

projects with θ ∈ [θ∗, θ̄] thus apply for credit. Consider what happens if the bank raises

the payback demand (interest). There are two effects: (1) For a given θ, the interest

payment is higher, and thus profits tend to be higher from this effect. (2) Now θ∗ will

be higher, so the less risky firms drop out of the market. So all together the effect is

ambiguous.

Williamson (1987) set up another model, taking as its starting point the costly state

verification model (chapter 4).

5.2 Moral hazard

The model is due to Bester & Hellwig (1987). It considers the usual moral hazard

setup with two different technologies B and G: πGG > πBB ∧ B > G. The loan

contract specifies an amount R to be repaid in case of success. The (IC)-condition for the

borrower (in order for him to choose the ‘good’ technology) is:

πG(G−R) ≥ πB(B −R) ⇔ R ≤ R̂ ≡ πGG− πBB

πG − πB

(26)

This gives rise to a picture like figure 5.6, p. 149. In order to close the model, it is nec-

essary to introduce the supply of credit. If supply is not infinitely elastic, there will be a

14



5.3 Collateral as sorting device 7 CHAPTER 7 – BANK RUNS

local or global maximum at R = R̂. Therefore we will have the case of backward-bending

supply just like in the Stiglitz-Weiss model.

(If the lenders are price-takers with infinitely elastic supply there will not be credit ra-

tioning and markets will clear.)

5.3 Collateral as sorting device

The model is due to Bester (1985), and suggests using collateral as a discriminating

device for the bank to distinguish between borrowers. In the setup, there are only two

kinds of borrowers, low-risk θa and high-risk θb. The idea in the model is much like in

Rothschild & Stiglitz (1976), where the equilibrium, if it exists must be a separating

equilibrium. However, we may not be sure that it actually exists. Examine figure 5.4, p.

145, which summarizes the whole model. Notice the following:

• Banks obtain zero profits due to competition.

• In figure 5.4, BB′ is steeper than AB since an additional unit of collateral costs more

to the firms than what the bank obtains from it. Same way with CC ′ compared to

AC.

• Iso-profit curves for the risky firms are above and on the right of those for the type

a firm since the former are riskier, and the firms’ profits are a convex function of

the cash flow they obtain.

6 Chapter 6 – Macro

Not part of the curriculum!

7 Chapter 7 – Bank runs

This chapter studies the phenomenon of bank runs (individual bank) or bank panics (entire

sector). The conventional explanation for a bank run is observation of large withdrawals

leading to fear of bankruptcy and even more withdrawals.

A central question addressed is whether usual deposit contracts (withdrawal on demand)

are efficient, and whether the fractional reserve system is justified.

7.1 Liquidity insurance – revisited

Review the model of chapter 2: Consider a three-period, one good economy with a con-

tinuum of ex-ante identical agents, each endowed with one unit of the good. Ex-post,

at t = 1, the agents learn whether they have the utility function u(C1) or ρu(C2). The

ex-ante expected utility is thus U = π1u(C1
1) + π2ρu(C2

2), where Ci
t is the consumption of
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an agent of type i at time t. It is assumed that u′ > 0 and u′′ ≤ 0. The good can either

be stored (with a perfect storage technology) or invested in a long-run technology which

returns R > 1 units at t = 2, but only L < 1 if liquidated at t = 1.

The result of the model was, that:

Pareto efficient allocation = Bank % Market economy % Autarky.

The fractional reserve banking system. Notice that competition between banks will

lead them to offer the optimal deposit contract. The question is whether this system is

stable in the sense that the bank will be able to fulfill its obligations.

Notice first that C∗
2 ≥ C∗

1 ⇔ ρR ≥ 1, since the patient consumer can always withdraw

deposits at t = 1 and store until the next period. Therefore, if ρR < 1, the optimal

allocation can never be implemented through a deposit contract.

If ρR ≥ 1 we have two possibilities:

• If the patient consumers expect the bank to be able to fulfill its obligations, it will

be optimal for them to keep their deposits in the bank. The bank will be solvent,

and the optimal allocation will be reached.

• If on the other hand the patient consumers expect that the bank will not be sol-

vent. They will then withdraw their deposits, and indeed the bank will fail. The

expectations turn out to be self-fulfilling. This is the case of a bank run.

Thus, there are two reasons why the efficient allocation may not be reached:

1. If the relative return from period 1 to 2 is too small (worse than the storage tech-

nology). This can be extended to the case of financial markets, where the ‘storage

technology’ yields a higher return, and it is therefore ‘harder’ for a deposit contract

to reach the efficient allocation.

2. The other reason is due to the second Nash-equilibrium, where the inefficient case

of a bank run is reached because of a lack of confidence in the bank. This can also

be seen as the case of lack of coordination between depositors.

The text suggests a row of solution concepts, including Narrow banking, Suspension

of convertibility (a maximum number of withdrawals at t = 1), Deposit insurance

system (e.g. ‘Indskydergarantifonden’), and Equity instead of deposit contracts.

7.2 Interbank market

This section uses a model of Bhattacharya & Gale (1987), which is a slightly modified

version of the previous model of liquidity insurance. Here there are several banks that

are confronted with i.i.d. liquidity shocks. The proportion of patient consumers who

withdraw early can be πL or πH with probabilities pL and pH . Therefore the bank can
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only offer contingent contracts, where the depositors bear the liquidity risk. This can

be overcome by opening an interbank market, where the solution can be shown to be:

C∗
1 =

1− I∗

πa

C∗
2 =

I∗R

1− πa

, πa = pLπL + pHπH .

This is independent of the type of the bank2, and therefore depositors are completely

insured. This can be implemented by an interest rate on the interbank market exactly

equalling supply and demand for liquidity.

However, there is a problem with this solution, namely if the type of the bank is not

observable. In this case the banks will be reporting to be of the same type except from

the very special case in which the interest rate on the interbank market exactly equals the

interest rate of the deposit contracts (R− 1). The second-best solution will involve

imperfect insurance of depositors.

Hellwig (1994) extends the model further by introducing a third investment oppor-

tunity from periode 1 to 2 with a random return. He shows that both in the efficient

allocation and in the second best allocation under asymmetric information, depositors

should bear some interest rate risk. This is because non-diversifiable risk should be

borne by all agents in proportion to their their risk tolerance (c.f. chapter 4)3.

The chapter ends with a short discussion of the importance of a Lender of Last Resort

(LLR) – typically a Central Bank.

8 Chapter 8 – Risk Management

8.1 Credit / Default risk

This subsection holds two different models on credit risk. The first approach assumes that

defaults are results of a Poisson proces, while the second uses an option pricing approach.

8.1.1 Defaults as Poisson events

This approach starts out by noting that the expected cost of default risk of a loan con-

sisting of a series of promised payments at future dates can be expressed as

P0 − P =
n∑

k=1

Cke
−rtk −

n∑
k=1

Ckpke
−rtk ,

2In the case of no interbank market, these expressions will be the same, just with πa replaced with
the bank’s type, and it therefore depends on this.

3Furthermore, in the 2nd best solution, banks have to provide their depositors at least the rate of
return they can obtain on financial markets.
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which is the difference between the expected repayment including the risk of default minus

the value of the loan if there was no default risk.

The usual way to characterize the credit risk, however, is to calculate the spread, which

is s = R− r, where R is the yield to maturity of the risky loan:

P =
n∑

k=1

Ckpke
−rtk =

n∑
k=1

Cke
−Rtk (27)

If one assumes that the probabilities in (27) are drawings of a Poisson proces (pk = e−λtk),

one obtains

n∑
k=1

Cke
−Rtk =

n∑
k=1

Cke
−λtke−rtk ⇒ R = r + λ ⇔ s = λ, (28)

such that the risk spread is independent of the characteristics of the loan.

8.1.2 Option pricing approach

This section is due to Merton (1974). Here the banks will lend an amount D0 to a firm

promising to repay D at t = T . The yield to maturity rL is defined by

D = D0e
rLT ⇒ log

(
D

D0

)
= rLT ⇒ rL = − 1

T
· log

[
D0

D

]
From this we can calculate an expression for the spread s = rL − r:

s = − 1

T
· log

[
D0

D

]
− r = − 1

T
· log

[
D0

D

]
−− 1

T
· log(erT ) =

− 1

T
· log

[
D0

D
· erT

]
= − 1

T
· log

[
D0

D · e−rT

] (29)

Denote the value of the firms assets by V (T ). The terminal payoff to the bank is thus

min(D, V (T )). This is similar to buying the firm’s assets and selling a call option to the

stockholders. In order to proceed with the model, we only need to specify V (T ). Following

Merton (1974), we assume V (T ) to be a geometric Brownian motion. Therefore, we can

use the Black-Scholes formula for option pricing, and the value of the loan is:

D0 = V N(h1) + De−rT N(h2) (30)

Combining (29) with (30) yields

s = − 1

T
log

[
N(h1)

d
+ N(h2)

]
, d =

De−rT

V
, (31)
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where d is interpretable as a ‘quasi debt to asset ratio’.

The advantages of the present model compared to the Poisson approach is that (1) Default

probability is endogenous, (2) The market pricing of risk is used, and (3) The liquidation

value of the firm is not zero.

Interesting comparative statics gives the following

1. s increases with d. (High leverage ⇒ high spread)

2. s increases with σ. (High risk ⇒ high spread)

3. The global risk premium sT increases with T .

It is fairly simple to extend the model to include collateral.

8.2 Liquidity risk

8.2.1 Reserve Management

This short section uses an ‘OR’-alike approach. The question is how large the reserves

R should be. Assume that net withdrawals is a random variable x̃. If the realization is

greater than R, the bank must pay a penalty interest rp. The banks profit is thus

Π(R) = rL(D −R) + rR− rpE[max(0, x̃−R)]

The first order condition to this gives us

Π′(R) = −(rL − r)− rp

(∫ ∞

R

(x−R)f(x)dx

)′
=

−(rL − r) + rp

∫ ∞

R

f(x)dx = −(rL − r) + rp · P [x̃ ≥ R] = 0 ⇔

P [x̃ ≥ R] =
rL − r

rp

(32)

8.2.2 Monti-Klein revisited

The setup stays pretty much the same here, and we can write the profit as

Π(rL, rD) = (rL − r)L(rL) + (r − rD)D(rD)− rpE[max(0, x̃−D(rD) + L(rL))]

As usual, we characterize the solution by the first order conditions

∂Π

∂rL

= (rL − r)L′(rL) + L(rL)− rp · P [x̃ ≥ R]L′(rL) = 0

∂Π

∂rD

= (r − rD)D′(rD)−D(rD) + rp · P [x̃ ≥ R]D′(rD) = 0,
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and using elasticities

r∗L =
r + rp · P [x̃ ≥ R]

1− 1
εL

r∗D =
r + rp · P [x̃ ≥ R]

1 + 1
εD

(33)

One can show that the following holds

1. If rp increases, then r∗L and r∗D also increase, and therefore L decreases while D

increases.

2. If the variance of x̃ increases, then if R > 0, L decreases.

8.3 Market risk

This section uses the CAPM model. We assume that the investors only care about first

and second moments of the distribution of the value of their portfolio. One can show that

the first order conditions to the utility maximization problem can be written as

−λρ + V x = 0 ⇔ x = λV −1ρ (34)

This equation says that all investors should hold collinear portfolios, which are a combi-

nation of the riskfree asset and a mutual fund. The individual component is captured by

λ = −∂U
∂µ

/(2 ∂U
∂σ2 ).

The Pyle, Hart-Jaffee approach. We view the bank as a portfolio manager with only

two risky activities L and D and a risk-free asset. Once again (of course) the banks

optimum will be to choose x∗ such that x∗ = λV −1ρ. From this, we obtain the following

results:

Proposition 8.1 If r̄D < r < r̄L and cov(r̃L, r̃D) > 0, then x∗L > 0 and x∗D < 0.

x∗L is increasing in (rL − r) and decreasing in (rD − r) and var(r̃L).

|x∗D| is increasing in (rL − r) and decreasing in (rD − r) and var(r̃D).

The first part of the proposition can be seen as an explanation for the intermediation

activity of banks. The proof of this part of the proposition can pretty simply be made by

calculating x∗.

The following critique has been put forward: (1) The fact that all banks should hold

collinear portfolios, (2) The existence of a utility function of the bank, and (3) If the pos-

sibility of bank failure is taken into account the symmetry between assets and liabilities

breaks. The last point is addressed below.

We now apply the model to the issue of capital requirements. We assume that the bank
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chooses its portfolio of (n + 1) securities, of which security 0 is the risk free asset. Liabil-

ities are held fixed, deposits D and equity K. At t = 1, the bank is liquidated, and the

value

K̃1 = K +
n∑

i=1

xi(r̃i − r0)

is distributed to the shareholders. The bank behaves as a portfolio manager and seeks to

maximize E[u(K̃1)]. First, we try to characterize the solution in the absence of solvency

regulation. Here, the bank will just maximize E[u(K̃1)], leading again to x∗1 = λ1V
−1ρ.

We then examine the probability of default:

P [K̃1 < 0] = N(−µ

σ
) = N

(
−K +

∑n
i=1 x∗i ρi

(x∗ · V x∗)1/2

)
.

A solvency ratio is usually defined as

CR =
K∑n

i=1 αix∗i

We then conclude the following

Proposition 8.2 In the absence of solvency regulation, and if banks do not take into

account limited liability, the probability of banks’ failure is a decreasing function of CR.

It is a reasonable argument why there should be some minimum restriction on banks CR.

If we impose this restriction, the new solution will become

x∗2 = V −1[λ2ρ + ν2α]

So we have the result that

Proposition 8.3 If α is not collinear to ρ and if the solvency constraint is binding, the

bank will choose an inefficient portfolio, where x∗2 is not collinear to V −1ρ. However, if

the weights α used to compute CR are proportional to the systematic risks β, the solvency

regulation becomes efficient, in the sense that all banks choose efficient portfolios and the

probability of default decreases.

9 Chapter 9 – Regulation

The regulatory instruments are normally classified into six types:

1. Deposit interest rate ceilings (chapter 3)

2. Entry, branching, network and merger restrictions (briefly chapter 3)

3. Portfolio restrictions (Points to the discussion of whether universal banking should

be allowed. Will not be addressed further).
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4. Deposit insurance (Chapter 7, but more to come. . . ).

5. Capital requirements (Chapter 8, but more to come. . . ).

6. Regulatory monitoring – mainly a question of closure policy (To come. . . ).

9.1 Deposit insurance

I chapter 7 it was shown how deposit insurance could be the solution to the problem of

bank runs. Here, we study the issue of deposit insurance further.

First, we establish that the existence of a deposit insurance system creates a moral hazard

problem for the bank. Note that the liquidation value of the bank in a two-period model

can be written as:

Ṽ = L̃−D + max(0, D − L̃) = F + (L̃− L) + [max(0, D − L̃)− P ].

Assume furthermore that L̃ can take only two values: X with probability θ and 0 with

probability 1− θ. The expected profit for the stockholders is then

π ≡ E(Ṽ )− F = (θX − L) + ((1− θ)D − P ). (35)

One can see the moral hazard problem arise from equation (35). For a fixed P , the bank

will, within a class of projects with the same NPV, choose those with the lowest θ (highest

risk). So, a flat deposit insurance pricing is problematic since it creates moral

hazard.

The question that must follow is how insurance premiums then should be priced. If

we assume that the value of the bank’s assets follow a geometric random walk, we can use

option pricing to answer this question, since we can invoke the Black-Scholes formula. The

idea is that the deposit insurance payment is exactly identical to a put option

on a bank’s assets a strike price D, and was put forward by Merton (1977). The

no arbitrage price of deposit insurance is P ∗ = De(rD−r)T N(h2)−LN(h1). One can show

from the expression and the expressions for h1 and h2 that P ∗

D
is not constant, namely it

should hold that

Proposition 9.1 The actuarial rate P ∗

D
of deposit insurance is an increasing function of

the deposit to asset ratio D
L

and of the volatility σ of the bank’s assets.

Chan, Greenbaum & Thakor (1992) have stated that fairly priced deposit insurance

may not be possible due to the existence of asymmetric information. Suppose therefore

that θ is private information for the bank. Fairly priced deposit insurance is possible if

there exists a P (D) such that

P (D(θ)) = (1− θ)D(θ), (36)
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where D(θ) = arg maxD Π(D, θ) = arg maxD(θX − L) + (1 − θ)D − P (D(θ)). This will

require that
∂Π

∂D
(D(θ), θ) = (1− θ)− P ′(D(θ)) = 0 (37)

If we differentiate (36) with respect to θ we get

P ′(D(θ))D′(θ) = (1− θ)D′(θ)−D(θ). (38)

If we compare (37) and (38) we see that it must be that D(θ) = 0, which is absurd.

Therefore, fairly priced deposit insurance is not possible because of asymmetric

information.

9.2 Solvency regulation

We only study one approach here – namely the Dewatripont-Tirole (1994) model. It

is a principal-agent model with an incomplete contract element. The model consists of 3

periods. In period 0 the balance sheet of the bank is given. The manager of the bank can

improve the quality of the loans by exerting effort, but at a personal cost. In period 1, a

first repayment v is obtained and at the same time a signal u is observed about the future

liquidation value η at date 2. u and v are independent, but are both related to the level

of effort. The idea is for the depositors (the regulator) to choose a rule for reorganizing

the bank such that the manager has incentives to choose high effort level.

Under complete information the matters are very simple; the bank (manager) should

be allowed to continue if u is higher than some threshold value û. So, here the optimal

decision rule only depends on u.

Under incomplete information matters are more complex. Here the decision rule de-

pends on both the signals u and v. One can show that the rule will give rise to a decreasing

function as shown in figure 9.1, p. 279, where the shaded areas correspond to ex-post in-

efficiency.

9.3 Closure of a bank

9.3.1 Who should decide?

Repullo (1993) examines who should decide whether the bank should be liquidated or

not. In this tree period model, the bank’s investment returns R̃ in period 2, but can be

liquidated in period 1, returning 1
2

< L < 1. Assume that E[R̃|u] = u. Thus the first-best

decision rule is to close the bank if u < L. However since u is not verifiable, we have

to delegate the decision. Repullo examines the two possibilities of a central bank or a

deposit insurance fund. He finds the following:

Proposition 9.2 The optimal allocation of the decision to close banks is to grant this

power to the Central Bank when withdrawals are small (v < v̂) and to the deposit insurance
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fund when they are large (v > n̂).

9.3.2 Closure – when?

This model is due to Mailath & Mester (1994). The idea is that we have a three-period

game, where the bank, having obtained one unit of deposits, chooses twice between a safe

investment (net return r) and a risky investment that yields at NPV at p(1 + ρ) < 1 + r,

but ρ > r. In between the two investments, the regulator can decide to close the bank

(at cost C) or let it continue. Two cases arise:

1. The bank makes the valuation that (R,S) ∼ (S, R) � (R,R). Here the equilibrium

is always (R,S) for the bank and Continue for the regulator.

2. The bank makes the valuation that (R,R) � (R,S). Here the equilibrium is more

complicated. Notice that if the bank is left to continue, it will always choose R

in the second period. If the bank plays R in the first period, the bank should be

closed, but if the closure cost C or the probability of success is sufficiently high,

than closing is not credible. For some values, the threat is credible, and this leads

the bank to choose (S, R).

Have a look at figure 9.3, p. 284 and figure 9.4, p. 286 which explain the outcome of the

model.
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